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Abstract
This paper presents a general method for generating
walking primitives for anthropomorphic 3D–bipeds.
Corresponding control torques allowing straight ahead
walking with pre–swing, swing, and heel–contact are
derived by dynamic optimization using a direct collo-
cation approach. The computed torques minimize an
energy based, mixed performance index. Zero moment
point (ZMP) and friction conditions at the feet ensur-
ing postural stability of the biped, as well as bounds on
the joint angles and on the control torques, are treated
as constraints. The method is applied to the model of
a biped with 12 joints for the purpose of developing
a walking primitive database allowing straight ahead
walking with situation dependent step–length adapta-
tion. The resulting biped motions are dynamically sta-
ble and the overall motion behaviour is remarkably
close to that of humans.

Keywords
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1 Introduction
Over the last years, major progress has been made in
construction and stabilization of biped walking ma-
chines. Perception based goal–oriented autonomous
walking, however, still remains an open field of re-
search [1]. Locomotion in a partly unknown environ-
ment requires the ability of the biped to adapt its gait
pattern according to the present situation, so that ob-
stacles in the walking trail can be passed by or over-
come. But, unlike industrial robots, bipeds are not
fixed rigidly to the ground and have the tendency to
tip over very easily. Their postural stability depends
on the behaviour of six unpowered DOF defining their
pose in the world, which can only be influenced in-
directly by appropriate actuation of the powered DOF
in the joints. Usually, the problem of executing a sta-
ble step–sequence is therefore solved by precomputa-
tion of an adequate reference trajectory, i.e., a walk-

ing pattern. As a consequence of the high nonlinear-
ity and complexity of the system, however, it is not
possible to achieve this in real time for a 3D biped in
general. A possible solution is to compute a series of
walking primitives for steps with different step param-
eters offline and to store them in a database. A situ-
ation dependent walking pattern can then be obtained
by selection and concatenation of appropriate walking
primitives during run–time.
Often, the problem of walking primitive synthesis is
simplified by prescribing time trajectories for selected
body parts [2–4]. These trajectories depend on the
characteristics of the actual biped robot. The task
of determining suitable trajectories relies on the de-
signer’s intuition and / or observations and biometric
measurements of human gait behaviour. A method
for walking primitive synthesis without any prescrip-
tion of a priori knownledge about the motion has been
reported in [5]. Dynamic optimization was applied
to the model of a human body in order to find a re-
peatable movement minimizing metabolic energy per
meter walked. The amount of supercomputer time
needed, however, was excessive.
This paper deals with a general approach, which is
suited for synthesizing databases of dynamically sta-
ble walking primitives [2] automatically in feasible
time, by fusing the advantages of the methods men-
tioned earlier. To achieve this, first, the search space
for a walking primitive is reduced by the general and
reasonable assumption, that a walking primitive com-
prises the three gait phases pre–swing, swing and
heel–contact and that one foot always remains flat
on the ground while the other one is moving. Ade-
quate motions are parameterized by the step param-
eters, i.e., step–length, step–width, and timing of the
gait–phases. The search space is further confined to
physically admissible trajectories. These trajectories
satisfy the zero moment point (ZMP) [3] and fric-
tion conditions ensuring postural stability of the biped,
conditions for smooth walking primitive concatena-
tion and restrictions on joint angles and on the con-
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trol torques given by the electrical and mechanical de-
sign. The remaining set of primitives is then searched
for the walking primitive minimizing an energy based,
mixed performance index using dynamic optimization.
The corresponding optimal control problem is solved
numerically by discretization of time using a direct–
collocation approach [6]. Direct–collocation has al-
ready been applied successfully to synthesize walking
primitives for a planar biped [7]; other examples of en-
ergy optimal planar walking are given in [8,9].
The paper is structured as follows. The problem is for-
mulated in Sec. 2 and the considered class of biped
walking machines is defined. In Sec. 3 the search
space for the optimization problem is characterized
mathematically by specifying the properties of a walk-
ing primitive and the conditions for physical admis-
sibility. After a discussion of the dynamic modelling
approach used in Sec. 4, the optimal control problem
is summerized in Sec. 5. We applied our approach as
an example to the model of an anthropomorphic 3D–
biped with 12 joints. A walking primitive database
was generated allowing straight ahead walking with
the step–lengths0:30 m,0:31 m, : : :, 0:50 m. The nec-
essary procedure and corresponding numerical results
are presented in Sec. 6.

2 Problem Formulation

Figure 1: Kinematic scheme of biped robot with head
frameH .

The described method is applicable to walking ma-
chines of the type illustrated in Fig. 1 consisting of
bodiesBi, i = 1 : : :Nb connected by driven joints
with the joint angles and control torquesqi and �i,

Figure 2: Biped feet with coordinate frames, lengthsl,
and pointsr.

i = 1 : : :Nj respectively. Symmetry of the biped’s
left and right side is assumed. The legs have to com-
prise at least six powered joints each, allowing to ma-
nipulate the feet in 6 DOF in Cartesian space relative
to the torso. Further joints in the biped’s torso are not
considered in this work, but could be regarded in prin-
ciple. The feet of the biped are assumed to be of such
a kind, that the contact behaviour can be approximated
by rigid body contacts, see Fig. 2.
As input to the problem, the biped’s kinematical pa-
rameters, all necessary dimensions, the masses and in-
ertia tensors of the bodiesBi, the restrictions on joint
anglesqi and joint velocities_qi, the maximum allowed
motor torques and the coefficients of friction between
the feet and the ground have to be provided.
The joint angles are then subsumed in the vectorq =

[ql; qr], with the vectorsql = [q1 : : : qNj=2]
T and

qr = [qNj=2+1 : : : qNj
]T representing the angles of

the left and right leg respectively. Four coordinate sys-
tems are defined, the world coordinate systemO, the
head frameH and the contact framesL andR fixed
in the sole of the left and right foot respectively. The
pose ofH , L andR with respect toO is given by
pH = [rH ;�H ], pL = [rL;�L] andpR = [rR;�R].
The elements of vectorr = [rx ry rz ]

T are Cartesian
coordinates,� = [�x �y �z ]

T are orientations repre-
sented by roll–, pitch–, and yaw–angles. The posture
of the biped is defined by the generalized coordinates
qg = [q;pL].
The goal is now to synthesize a database of walking
primitives allowing straight ahead walking with step–
length adaptation. The individual primitives need to be
computed in such a way, that they can be concatenated
in realtime resulting in a smooth and physically fea-
sible joint trajectory together with the corresponding
control torques needed for driving the biped.

3 Walking Primitive
In the following subsections the search space of the op-
timal control problem is defined mathematically. First,
the kinematics of a walking primitive are specified,
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next, the conditions for contact stability are stated.
Physical admissibility in addition requires that the
joint angle and joint torque trajectories conform with
restrictions given by the mechanical and electrical de-
sign. This problem is discussed in Sec. 3.3. Finally,
conditions allowing the concatenation of individual
walking primitives to a smooth trajectory are derived
in Sec. 3.4.

3.1 Walking Primitive Kinematics

rR

L
ez =

O
ez

rRb

R
ez

O
ez

O
ez

O
ex

O
ex

R
ex

Phase
Heel−Contact−

t 2 [t2; ts]

Swing−
Phase

t 2 [t1; t2[

Phase

R
ez

rL = O

Pre−Swing−

rRf

R
ex

O

R
ez

R
ex

rRbO

L
ex =

O
ex

II)

I)

III)

t 2 [0; t1[

l1 l1 � lxf

l2 � l
xb

l2

Figure 3: Three phases of walking primitive, side view.

The considered walking primitives comprise the 3
phasespre–swing, swingandheel–contactand repre-
sent a single step in the sagittal plane with the right
foot swinging, see Fig. 3 and Fig. 4. The left foot re-
sides flat on the ground in the origin of the world co-
ordinate systemO given bypL(t) = 0, 8t 2 [0; ts].
With the transformation

qg(t) =

�
q(t)

pL(t)

�
=

�
E

0

�
q(t) ;8t 2 [0; ts] ;

whereE is the identity matrix, the system can then be
described in minimal coordinatesq(t) for this contact
situation reducing the number of system states during
walking primitive synthesis from2�(Nj+6) to2�Nj .
In order to avoid undesirable mechanical stress, the tra-
jectoryq(t) is constrained to be continuous and con-
tinuously differentiable with respect to time. This im-
plies that there are no jumps in the Cartesian velocities
of the right foot and thus impacts are avoided when the
heel contacts the ground.
During swing–phase the mechanism of the biped
forms an open kinematic chain. During pre–swing and
heel–contact, however, both feet contact the ground

thus forming a closed chain. This is taken into account
by kinematic constraints imposed on the system accel-
erations. These constraints and boundary conditions
and inequality constraints necessary to characterize the
kinematics of a walking primitive for the optimization
process are summarized in the following. Step–length
of the previous stepl1, step–lengthl2, step widthw,
phase–transition–timest1 andt2 and step–durationts
are used to parameterize the motion.
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Figure 4: Three phases of walking primitive and feasi-
ble regions for ZMP, top view.

I) Pre–Swing–Phase ( t 2 [0; t1[ ):
The walking primitive starts with the right foot located
flat on the ground att = 0. Pose and velocity are given
by the boundary conditions

pR(0) =
�
�l1 �w 0 0 0 0

�T
�

O _rR(0)

O!R(0)

�
= CR(q(0)) _q(0) = 0 ;

(1)

whereCR is a Jacobian matrix,O _rR andO!R are
the Cartesian and angular velocities represented in the
world frameO. The respective initial system state is
denoted[q0 ; _q0] = [q(0) ; _q(0)].
Duringt 2]0; t1[, the right foot rolls over the toes. This
contact situation is expressed by the kinematic con-
straint

2
4 O�rRf (t)

O _!R;x(t)

O _!R;z(t)

3
5 = CRf (q(t))�q(t)+ _CRf (q(t)) _q(t) = 0

(2)

The heel stays above ground which is ensured by the
inequality constraintrRb;z(t) � 0.

II) Swing–Phase ( t 2 [t1; t2[ ):
The swing–phase starts with the right foot just about to
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leave the ground att = t1 and then swinging towards
its new position. External collisions with the ground
and internal collisions with the left leg are avoided
by use of the inequality constraintsrRj ;z(t) � 0,
j = 1 : : : 4, andrRj ;y(t) � �wmin, j = 2; 4, with
wmin representing a minimal lateral distance between
the left and right leg.

III) Heel–Contact–Phase ( t 2 [t2; ts] ):
At t = t2 the foot touches the ground and rolls around
the heel duringt 2]t2; ts[. The corresponding kine-
matic constraint is given by

2
4 O�rRb(t)

O _!R;x(t)

O _!R;z(t)

3
5 = CRb(q(t))�q(t)+ _CRb(q(t)) _q(t) = 0

(3)

The toes need to remain above ground, which is en-
sured byrRf;z(t) � 0.
The walking primitive ends att = ts, when the right
foot is flat on the ground again. Pose and velocity are
given by the boundary conditions

pR(ts) =
�
l2 �w 0 0 0 0

�T
�

O _rR(ts)

O!R(ts)

�
= CR(q(ts)) _q(ts) = 0 :

(4)

The respective final system state is denoted by
[qs ; _qs] = [q(ts) ; _q(ts)].

3.2 Conditions for Contact Stability
An important feature of all forms of walking is, that
physical contacts between a foot and the ground are
unilateral. Stability of the contact situation during the
three walking phases defined in Sec. 3.1 thus requires
the occuring contact forces to conform with the con-
tact stability conditions summarized next. The sum of
all forces on a contact surface is thereby represented
by the resultant contact forcesf = [fx fy fz]

T and
momentsn = [nx ny nz]

T acting in the pointsrL,
rRf , rRb depending on the current walking phase, see
Fig. 5.

� Unilaterality Conditions on the resultant normal
contact forces ensure, that a desired contact situation
does not change by a foot lifting off the ground:

fL;z � 0; 8t 2 [0; ts]

fRf;z � 0; 8t 2 [0; t1[

fRb;z � 0; 8t 2 [t2; ts] :

(5)

� ZMP Conditions [3] are used in this work to pre-
vent a foot from beginning to rotate around its edges.
The ZMPrp is defined as the point on the contact sur-
face, where the resultant momentsnx; ny of all contact

forces are zero. The contact situation is stable, if the
ZMP remains inside the contact area.
With the resultant contact forces sketched in Fig. 5 the
ZMP rpL of the left foot, which should remain flat on
the ground during all three phases, can be expressed in
the left foot frameL as

LrpL;x = �
nLy

fLz

; LrpL;y =
nLx

fLz

:

The following constraints result from the area of valid
ZMP positions illustrated in Fig. 48t 2 [0; ts]:

�lxb � �
nLy

fLz

� lxf ; �ly �
nLx

fLz

� ly : (6)

As the right foot rotates around its front (back) edge
duringpre–swing I(heel–contact III) there is no resul-
tant momentny and the contact surface degenerates to
a line. The ZMP moves along this line while its coor-
dinates in frameR are given by

RrpR;y =
nRf;x

fRf;z

; RrpR;x = lxf ; 8t 2 [0; t1[

RrpR;y =
nRb;x

fRb;z

; RrpR;x = �lxb ; 8t 2 [t2; ts] :

Considering the areas designated in Fig. 4 now leads
to the constraints

�ly �
nRf;x

fRf;z

� ly; 8t 2 [0; t1[

�ly �
nRb;x

fRb;z

� ly; 8t 2 [t2; ts]
(7)

which ensure that the front (back) edge of the right foot
remains flat on the ground.

� Friction Conditions ensure that a supporting foot
neither begins to slip on the ground nor starts to ro-
tate around the normal axisez of the contact surface.
The resultant tangential forcesfx, fy and the resultant
momentsnz cannot be treated independently, because
their effects combine. Thus the friction condition [2]

q
f
2
x + f

2
y +

���nz
�

��� � �fz (8)

is applied, which has to be satisfied by the resultant
contact forcesFL of the left foot during all three
phases, byFRf at the right foot duringpre–swing I,
and byFRb duringheel–contact III. The first term in
(8) defines the usual friction cone, while the second is
an additional tangential force induced by the moment
nz. The constant0 < � < 1 denotes the friction co-
efficient of the rubbing surfaces and� is the frictional
radius. The assumed frictional radius for the left foot
is �L = 0:5

p
(2ly)2 + (lxb + lxf )2 and for the right

foot �Rf = �Rb = ly during both pre–swing phase
and heel–contact phase.
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Figure 5: Contact constraints and forces during phases of walking primitive.

3.3 Mechanical and Electrical Restrictions
Physical admissibility of the walking primitives also
demands compliance with restrictions given by the
performance limits of the motors and by the mechani-
cal mechanism. This is regarded by the inequality con-
straints

qmin � q(t) � qmax

_qmin � _q(t) � _qmax; 8t = [0; ts]:

�min � � (t) � �max

(9)

3.4 Conditions for Walking Primitive
Concatenation

Step-length adaptation requires the concatenation of
cyclic and transition walking primitives. These primi-
tives are specified by additional constraints on the ini-
tial and final system states[q0; _q0] and [qs; _qs]. For
derivation of the related boundary conditions we will
make use of the symmetry in the kinematic structure
of the biped, allowing to easily obtain a walking prim-
itive for the right foot supporting the biped, denoted
by ~q(t), from the walking primitiveq(t). It results by
interchanging the joint angles of the left and right leg,
which is performed by the mapping

~q(t) = [qr(t); ql(t)] ; t = [0; ts] : (10)

Respective joint torques� (t) are mapped accordingly.
In order to obtain a cyclic walking primitive, the addi-
tional boundary conditions

qs = ~q0 and _qs =
_~q0 (11)

are stated for a walking primitive withl1 = l2 = a.
This allows the concatenation ofq and~q into a smooth
walking patternq, ~q, q, ~q, q, : : : enabling continuous
symmetric cyclic walking with a given step–lengtha,
see also [1]. A cyclic walking primitive is denoted by
q
l1;l2 = q

a;a in the following.
For concatenation of two cyclic walking primitives
q
a;a andqb;b with different step–lengthsa 6= b, see

Fig. 6, a transition walking primitiveqa;b is defined.
In order to obtain a continuous state trajectory after
concatenation, initial and final states of the transition
primitive have to match the corresponding states of the

cyclic primitives. This is ensured by the boundary con-
ditions

q
a;b
0 = ~qa;a

s and _qa;b
0 = _~qa;a

s ;

q
a;b
s = ~qb;b

0 and _qa;b
s = _~qb;b

0 :

(12)

When the transition primitive is mapped according to
(10) the primitive~qa;b shown in the center of Fig. 6
is obtained. This primitive can then be concatenated
with the two cyclic primitives yielding the complete
transition as depicted in Fig. 6 on the right. The result-
ing walking pattern enables the biped to execute three
steps with the step–lengthsa, b andb.
In order to enable walking withn different step–
lengths, a database ofn cyclic walking primitives with
different step–lengthsl = l1 = l2 needs to be com-
puted. Considering possible transitions between all of
the cyclic primitivesp = n(n�1) transition primitives
are required.

4 Dynamic Modeling
The system dynamics in the three phases are modeled
under the assumption of bilateral rigid body contacts
between the feet and the ground. This allows the exer-
tion of contact forces in all directions contrary to phys-
ical reality. In combination with the contact stability
conditions formulated in Sec. 3.2, however, the model-
ing is permissible, because they prevent the occurrence
of contact forces not being compatible with the actual
unilateral contact situation.
The dynamics of the biped in minimal coordinates
q(t) 2 IRNj are then given by

M �q = h+ � +C
T
RfFRf +C

T
RbFRb (13)

with M(q) the mass–matrix,h(q; _q) coriolis, cen-
trifugal, and gravity effects, and� the joint
torques. The JacobiansCRf (q) 2 IR5�Nj and
CRb(q) 2 IR5�Nj obtained in (2) and (3) are
projecting the generalized constraint contact forces
FRb = [fRb; nRb;x; nRb;z] 2 IR5�1 and FRf =

[fRf ; nRf;x; nRf;z] 2 IR5�1 on the generalized co-
ordinates. Since the contact situation of the left foot is
formulated in minimal coordinates, the forcesFL =

[fL;nL] 2 IR6�1 are not part of the dynamic system
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equations. However, they can be recalculated easily
using the Principle of D’Alambert as soon as�q and the
external forces on the right foot have been determined,
see also [2]. The system accelerations duringswing–
phase II(FRb = FRf = 0) are computed as

�q =M
�1(h+ � ) ; 8t 2 [t1; t2[ : (14)

During pre–swing I(FRb = 0) resp.heel–contact III
(FRf = 0) the 5 additional equations (2) resp. (3) on
the system accelerations are used together with (13) to
solve for[�q;FRf ] resp.[�q;FRb] resulting in:

�q =M�1(h+ � +C
T
Rf=bFRf=b)

FRf=b =� (CRf=bM
�1
C

T
Rf=b)

�1

(CRf=bM
�1(h+ � ) + _CRf=b _q)

8t 2 [0; t1[ = [t2; ts] :

(15)

5 Optimal Control Problem
The instantaneous mechanical powerPi transmitted
by a motor in thei-th joint of the biped is given as
Pi(t) = _qi(t)�i(t), with �i the motor torque. The en-
ergy released by the system when backdriving the mo-
tor (Pi(t) < 0) is usually not used for recharging the
power source. This is regarded in the performance in-
dex by penalizing the sum of the absolute values of
Pi(t), i = 1 : : :Nj , indicating, that power is actively
consumed when dissipating this energy [8]. However,

a performance index solely based on the minimization
of jPi(t)j, results in a motion with the right foot swing-
ing very closely to the ground. This is an undesirable
effect for execution of the trajectories on a physical
biped. We therefore introduce an additional term dur-
ing swing–phase, which penalizes the right foot being
too close to the ground, cf. Fig. 2:

min
� (t)

0
@ Z t1

0

NjX
i=1

����Pi(t)
Pn

���� dt

+

Z t2

t1

NjX
i=1

����Pi(t)
Pn

����+
4X

j=1

e

�(��rRj;z
)
dt

+

Z ts

t2

NjX
i=1

����Pi(t)
Pn

���� dt
1
A

(16)

with t1,t2 andts given and fixed;Pn, � and� are con-
stant parameters.
This functional needs to be minimized subject to:

(i) the differential equations (14), (15) of the system
according to the actual motion phase

(ii) the contact stability conditions (5), (6), (7), (8)
(iii) the inequality constraints for collision avoidance
(iv) phase connection conditions on the system state

at t = t1 andt = t2 ensuring a continuous state
trajectory
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(v) the inequality constraints on the joint angles, joint
velocities and joint torques to satisfy restrictions
given by the mechanical and electrical design (9)

(vi) the boundary conditions (1) and (11) for a cyclic
primitive or (12) for a transition primitive

6 Numerical Results
The described method was applied to a simplified
model of the biped robot “Johnnie” developed at
TU München [10]. Its kinematics is illustrated in
Fig. 1. Three joints are located in each hip, one joint in
the knees and two joints in the ankles. Numerical re-
sults for a sample walking primitive database allowing
straight ahead walking with the step–lengths0:30 m,
0:31 m, : : :, 0:5 m are presented next.
The database was obtained by solving the optimal
control problems stated in Sec. 5 for the necessary
441 cyclic and transition walking primitives with the
direct–collocation software DIRCOL [6]. DIRCOL
converts the continuous optimal control problem into a
static optimization problem by discretization of trajec-
tories in time. The resulting nonlinear programming
problem is then solved by the sparse solver SNOPT
[11]. All necessary dynamical equations were derived
with the help of AUTOLEV [12], a tool for analytical
motion analysis.
The ratio of phase–transition–timet1 to step duration
p1 = t1=ts = 0:12, the ratio of phase–transition–time
t2 to step durationp2 = t2=ts = 0:93 and the average
forward velocityv = (l1 + l2)=(2ts) = 0:71 m/s were
assumed as fixed, allowingt1, t2 and ts to be deter-
mined froml1 and l2. Although optimal control the-
ory as well as DIRCOL allow for treating the temporal
parameterst1 and t2 as additional optimization vari-
ables they are considered here as fixed for purposes
of improved convergence. The step–width used was
w = 0:20 m, the friction coefficient� = 0:7 and the
parameters in the performance functionPn = 1 W,
� = 300 =m and� = 0:01 m.
Using a trajectory for statically stable walking [1]
as a rough initial solution, a cyclic walking prim-
itive q

0:3;0:3 was generated by subsequent refine-
ment of the discretization and by gradually adding the
constraints. The computation time required thereby
strongly depended on the quality of the initial solution
and on the fineness of the discretization. Typically, a
solution could be obtained within a few hours using a
current standard PC and about 20 grid points. The re-
sulting trajectories for the position of the biped’s cen-
ter of mass (COM) in the world–coordinate systemO
and the orientation of the head frame given by RPY–
angles�H are depicted in Fig. 7. The relatively large
oscillation in the pitch angle�H;z are due to a miss-
ing degree of freedom around thez-axis in the torso of

the biped and the fact, that the left foot resides flat on
the ground. The amplitudes further increase for longer
step–lengths.
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Figure 7: Resulting trajectories for positionrc of
COM and orientation�H of biped head for cyclic
walking primitive withl = l1 = l2 = 0:3 m:

Beginning with the initial solutionq0:3;0:3 previously
obtained, the optimization runs for walking primitive
database synthesis were started. For all optimizations,
20 grid points were used. First, cyclic walking prim-
itives were computed by an automatic procedure sys-
tematically increasing the step–length by�l = 0:01m
and starting the optimizations using the feasible tra-
jectory of the previous optimization run as an initial
guess. This strategy takes advantage of the fact, that
convergence is greatly enhanced in the vicinity of ex-
isting solutions. By this procedure, the cyclic walk-
ing primitives with l = 0:31 m, 0:32 m, : : :, 0:50 m
could be obtained within 2 hours computation time,
with all but one primitive converging without user in-
tervention.
Subsequently, the optimizations for then = 21�20 =

420 transition primitivesqa;b were started. The nec-
essary final and initial system states, cf. (12), were
read from the respective cyclic primitivesqa;a and
q
b;b automatically. The cyclic primitivesqa;a also

served as starting trajectory to each problem. The
computation time needed was 6 days on a single com-
puter, although distribution of the optimizations to dif-
ferent computers is possible.94% of the optimization
problems converged without user intervention.
The motion of the head, center of mass and feet in the
x-z-plane after concatenation of cyclic and transition
walking primitives to a walking pattern with the step–
lengthsl = 0:35 m, 0:41 m, 0:30 m, 0:50 m, 0:50 m
are shown in Fig. 8.
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Figure 8: Path of head, COM and feet in the sagit-
tal plane for a step sequence with the step–lengths
l = 0:35 m, 0:41 m, 0:30 m, 0:50 m, 0:50 m .

7 Conclusions and Future Work
The results presented in this paper demonstrate that
dynamically stable, physically feasible, and naturally
looking walking primitives can be generated by opti-
mal control techniques using direct collocation meth-
ods. This approach is well suited for automatically
generating databases of primitives by systematic varia-
tion of the walking parameters, because convergence is
greatly enhanced in the vicinity of existing solutions.
Future work will consider curve walking and striding
over obstacles in addition to straight ahead walking.
The resulting database will then be used to provide the
walking patterns required for perception–based adap-
tive walking of a biped robot [1].
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[3] M. Vukobratović, B. Borovac, D. Surla, and
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