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Abstract—This paper presents a systematic approach to gener-
ate walking primitive databases for anthropomorphic 3D–bipeds
allowing step length adaptation, direction changes and stepping
over obstacles. The individual walking primitives are derived by
optimal control techniques. Zero moment point (ZMP) and fric-
tion conditions at the feet ensuring postural stability of the biped,
as well as bounds on the joint angles and on the control torques,
are treated as constraints. The resulting reference trajectories are
validated by dynamic simulations.

I. INTRODUCTION

Over the last years, major progress has been made in construction
and stabilization of biped walking machines. Gait generation for per-
ception based goal–oriented walking, however, still remains a chal-
lenging field of research [1]. Locomotion in a partly unknown envi-
ronment requires the ability of a biped to adapt its gait pattern accord-
ing to the present situation, so that obstacles in the walking trail can
be passed by or overcome. But, unlike industrial robots, bipeds are
not fixed rigidly to the ground and have the tendency to tip over very
easily. Their postural stability depends on the behaviour of six unpow-
ered degrees of freedom (DoF) defining their pose in the world, which
can only be influenced indirectly by appropriate actuation of the pow-
ered DoF in the joints. The control problem of executing stable steps
is therefore usually based on an adequate reference trajectory, i.e. a
walking pattern. As a consequence of the high nonlinearity and com-
plexity of the system, however, it is not possible in general to compute
a walking pattern online, while taking all dynamical properties of a 3D
biped into account. Hence, methods for online walking pattern genera-
tion are usually based on simplified robot models and rely on feedback
control [2]. One possible approach for gaining more accurate refer-
ence trajectories online is to split the problem in two parts. First, a
series of walking primitives (WPs) for steps with different step param-
eters, like step length or step clearance, is computed offline and stored
in a database. Using information about obstacles in the walking trail
provided by a perception system, a step sequence planner can then se-
lect and concatenate appropriate WPs during runtime in order to obtain
a situation dependent walking pattern [3–6].

This paper deals with a systematic approach, which is suited for syn-
thesizing databases of dynamically or statically stable WPs [7] auto-
matically and in feasible time using optimal control techniques [8–10].
The WPs in the database are synthesized such that they can be concate-
nated in a reference trajectory allowing step length adaptation, changes
in direction and stepping over obstacles. As a validation of the refer-
ence trajectories, results of dynamic simulations are presented.

In Section II the problem of WP database generation is formulated
and the class of biped walking machines considered is defined. The

search space for the proposed general WPs is characterized in Sec-
tion III. After a discussion of the dynamic modeling approach used in
Section IV, the optimal control problem is summarized in Section V.
Numerical results gained by applying the method to the model of an
anthropomorphic 3D–biped with 12 joints are presented in Section VI.
After general considerations about the derivation of symmetric steps
and about WP concatenation, the necessary procedure for WP database
generation is discussed in Section VIII. It is shown, how cyclic, transi-
tion, curve and barrier WPs can be gained by specialization of general
WPs. Section IX presents results of a dynamic simulation of a step se-
quence comprising step length adaptation, direction changes and step-
ping over obstacles.

II. PROBLEM FORMULATION

We consider walking machines of the type illustrated in Fig. 1 con-
sisting of bodies Bi, i = 1 . . . Nb, connected by driven joints with
the joint angles qi and control torques τi, i = 1 . . . Nj , respectively.
Symmetry of the biped’s left and right side is assumed to allow a sym-
metric gait. The legs have to comprise at least six powered joints each,
allowing to manipulate the feet in 6 DoF in Cartesian space relative to
the torso. Further joints in the biped’s torso are not considered in this
work, but could be regarded in principle.
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Fig. 1. Kinematic scheme of biped robot withNb = 17 bodies Bi and
Nj = 12 driven joints.

As input to the problem, the biped’s kinematical parameters, all nec-
essary dimensions, the masses and inertia tensors of the bodies Bi, the
restrictions on joint angles qi and joint velocities q̇i, the maximum al-
lowed motor torques and the coefficients of friction between the feet
and the ground have to be provided.

The joint angles ql = [q1 . . . qNj/2]
T of the left leg and qr =

[qNj/2+1 . . . qNj ]T of the right leg are then subsumed in the vector



q = [ql, qr]. Accordingly, joint torques are subsumed in � = [� l, � r].
Four coordinate systems are defined, namely the world coordinate sys-
tem SO and the contact frames SL and SR fixed in the sole of the
left and right foot respectively. The contact coordinate system SA is
needed to describe the contact situation of the right foot, if the foot is
rotated with respect to the left foot, see Fig. 2. The pose of SL, SR and
SA with respect to SO is given by pL = [rL,�L], pR = [rR,�R]

and pA = [rA,�A] . The components of vector r = [rx ry rz]
T are

Cartesian coordinates. � = [φx φy φz]
T are orientations represented

by roll–, pitch–, and yaw–angles. The posture of the biped is defined
by the generalized coordinates qg,R = [q,pL] during a step with the
right and qg,L = [q,pR] during a step with the left leg.

Fig. 2. Biped feet with world coordinate system SO, left/right foot
frame SL/SR, contact frame SA, lengths l, and points r. The left foot
frame SL coincides with SO, the derivation of SA is given.

To provide the described biped with the reference trajectories needed
for locomotion in 3D-scenarios, a database of WPs allowing straight
ahead walking with step length adaptation, changing direction and
striding over obstacles has to be synthesized. The individual primi-
tives Υ(t) = [q(t),� (t)], t = [0, ts] need to be computed in such a
way, that they can be concatenated in real time resulting in the con-
trol torques � ref (t) required for driving the biped along a smooth and
physically feasible joint trajectory qref (t) while maintaining a defined
behaviour pL,ref (t) resp. pR,ref (t) of the unpowered DoF.

III. SEARCH SPACE SPECIFICATION FOR A GENERAL WP

In the following subsections, the search space of the optimal con-
trol problem for a single general walking primitive is defined. A gen-
eral walking primitive corresponds to a single step with the right foot
swinging. Due to the assumed symmetry of the biped robot, however,
a symmetric step for the left foot swinging can be derived by a simple
mapping, which will be explained in Section VII-A.

A. Kinematics of Walking Primitive

The considered WPs comprise the 3 phases pre–swing, swing
and heel–contact, see Fig. 3 and Fig. 4. The left foot resides
flat on the ground during the whole motion, given by pL(t) =

[r0x r
0
y r

0
z 0 0 φ0

z]
T , ∀t ∈ [0, ts]. Using the transformation qg,R(t) =

[q(t),pL(t)], ∀t ∈ [0, ts] the system can be described in minimal co-
ordinates q(t) for this contact situation reducing the number of system
states during walking primitive synthesis from 2× (Nj +6) to 2×Nj .
Thus, the system state is given by x(t) = [q(t), q̇(t)] in the follow-
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Fig. 3. Three phases of WP, side view.

ing. However, it is obvious, that the feasibility of a walking primitive
will not depend on the parameters r0x, r0y, r0z , φ0

z since they do not
influence the attitude of the biped with respect to the gravity vector

Og = [0 0 −1]T . Therefore, in order to simplify the discussion and
without loss of generality, the left foot of the biped is assumed to be
positioned in the origin of the world coordinate system according to
pL(t) = 0 during WP synthesis, see Fig. 2. During swing-phase II,
the mechanism of the biped forms an open kinematic chain. During
pre-swing I and heel-contact III, however, both feet contact the ground
thus forming a closed chain. This hybrid character is taken into ac-
count by kinematic constraints imposed on the system accelerations.
Step length of the previous step lI , step length lII , step widths w0, ws,
angles φ0, φs corresponding to a rotation of the right foot with respect
to the left foot in pre-swing I resp. heel-contact III, as well as phase–
transition–times t1, t2 and step–duration ts are used to parameterize
the motion.

In order to avoid undesirable mechanical stress, the trajectory q(t)

is constrained to be smooth, i.e. continuous and continuously differ-
entiable with respect to time. This implies that there are no jumps in
the Cartesian velocities of the right foot and thus impacts are avoided
when the heel contacts the ground.
I) Pre–Swing–Phase ( t ∈ [0, t1[ ):
The WP starts with the right foot located flat on the ground at t= 0.
Pose and velocity are given by

pR(0) =
� −lI −w0 0 0 0 φ0

�T
[AṙR(0),A!R(0)] = CR(q(0)) q̇(0) = 0 ,

(1)

where CR ∈ IR6×Nj is a Jacobian matrix mapping the joint veloci-
ties q̇(t) to the Cartesian velocities AṙR and angular velocities A!R

of the right foot represented in the contact frame A. The respective
initial system state is denoted x0 = [q0, q̇0] = [q(0), q̇(0)]. During
t ∈]0, t1[, the right foot rolls over the toes. This contact situation is
expressed by the kinematic constraint

[Ar̈Rf (t),Aω̇R,x(t),Aω̇R,z(t)] =
d

dt
[CRf (q)q̇] = 0, (2)

where rRf is a point at the toes of the foot and CRf ∈ IR5×Nj a



Jacobian , see Fig. 4. The heel stays above ground which is ensured by
the inequality constraint rRb,z(t) ≥ 0.
II) Swing–Phase ( t ∈ [t1, t2[ ):
The swing-phase II starts with the right foot just about to leave the
ground at t= t1 and then swinging towards its new position. Inequality
constraints are used to avoid collisions with the ground or the left leg.
III) Heel–Contact–Phase ( t ∈ [t2, ts] ):
At t= t2, the foot touches the ground and rolls around the heel during
t ∈]t2, ts[. The corresponding kinematic constraint is given by

[Ar̈Rb(t),Aω̇R,x(t),Aω̇R,z(t)] =
d

dt
[CRb(q)q̇] = 0 (3)

where rRb is a point at the heel of the foot and CRb ∈ IR5×Nj a
Jacobian, see Fig. 4. The toes need to remain above ground, which is
ensured by rRf,z(t) ≥ 0. The WP ends at t= ts, when the right foot
is flat on the ground again. Pose and velocity are given by

pR(ts) =
�
lII −ws 0 0 0 φs

�T
[AṙR(ts),A!R(ts)] = CR(q(ts)) q̇(ts) = 0 .

(4)

The final system state is denoted xs = [qs, q̇s] = [q(ts), q̇(ts)].

for ZMP
feasible regions

Fig. 4. Three phases of WP and feasible regions for ZMP, top view.
(φ0 = φs = 0, i.e. no rotation of right foot with respect to left foot.)

B. Conditions for Contact Stability

In all forms of walking, physical contacts between a foot and the
ground are unilateral. Stability of the contact situation during the three
walking phases defined in Section III-A thus requires the occuring con-
tact forces to conform with the contact stability conditions summa-
rized next. The sum of all forces on a contact surface is thereby rep-
resented by the resultant contact forces f=[fx fy fz]

T and moments
n=[nx ny nz]

T acting in the points rL, rRf , rRb depending on the
current walking phase, see Fig. 5.
• Unilaterality Conditions on the resultant normal contact forces en-
sure, that a desired contact situation does not change by a foot lifting
off the ground, i.e. LfL,z ≥ 0 during all three phases for the left foot
and AfRf,z ≥ 0 during pre-swing I resp. AfRb,z ≥ 0 during heel-
contact III for the right foot.
• ZMP Conditions [11] are used in this work to prevent a foot from
beginning to rotate around its edges. The ZMP rp = [rp,x rp,y 0]T

is defined as the point on the contact surface, where the resultant mo-
ments nx, ny of all contact forces are zero. The contact situation is

stable, if the ZMP remains inside the contact area. The ZMP rpL of
the left foot can be expressed in the left foot frame L as

LrpL,x = −LnL,y

LfL,z
, LrpL,y =

LnL,x

LfL,z
.

Inequality constraints prevent the ZMP from leaving the area of valid
ZMP positions illustrated in Fig. 4 and ensure that the foot remains flat
on the ground during all three phases. As the right foot rotates around
its front edge during pre-swing I there is no resultant moment AnRf,y
and the contact surface degenerates to a line. The ZMP of the right foot
moves along this line while its coordinates in frame SR are given by

RrpR,y =
AnRf,x

AfRf,z
, RrpR,x = lxf (5)

By preventing RrpR from leaving the left or right edge of the foot,
see Fig. 4, rotations around the x-axis eAx are avoided. The situation
during heel-contact III is treated accordingly.
• Friction Conditions must ensure that a supporting foot neither be-
gins to slip on the ground nor starts to rotate around the normal axis ez
of the contact surface. Thus the friction condition [7]q

f2
x + f2

y +
���nz
κ

��� ≤ µfz (6)

is applied. The constant 0 < µ < 1 denotes the friction coefficient
of the rubbing surfaces and κ is the frictional radius. The assumed
frictional radius for the left foot is κL = 0.5

p
(2ly)2 + (lxb + lxf )2

and for the right foot κRf = κRb = ly during both pre–swing phase
and heel–contact phase.

C. Mechanical and Electrical Restrictions

Physical admissibility of the WPs also demands compliance with re-
strictions given by the performance limits of the motors and by the me-
chanical mechanism. This is regarded by inequality constraints defin-
ing maximum and minimum values for the joint angles q(t), joint ve-
locities q̇(t), and joint torques � (t).

IV. DYNAMIC MODELING

The system dynamics in the three phases of a WP are modeled under
the assumption of bilateral rigid body contacts between the feet and
the ground. Since the conditions for contact stability formulated in
Section III-B prevent the occurrence of contact forces which are not
compatible with the actual unilateral contact situation, this modeling is
permissible. The dynamics of the biped in minimal coordinates q(t) ∈
IRNj are then given by

Mq̈ = h+ � +C
T
Rf AFRf +C

T
Rb AFRb (7)

with the mass–matrix M (q), coriolis, centrifugal, and gravity effects
h(q, q̇), and joint torques � . The Jacobians CRf (q) ∈ IR5×Nj and
CRb(q) ∈ IR5×Nj from Eq. (2) and Eq. (3) are projecting the gener-
alized constraint contact forces AFRf = [AfRf , AnRf,x, AnRf,z] ∈
IR5×1 and AFRb = [AfRb, AnRb,x, AnRb,z ] ∈ IR5×1 on the gener-
alized coordinates. Since the contact situation of the left foot is formu-
lated in minimal coordinates, the forces LFL = [LfL, LnL] ∈ IR6×1

are not part of the dynamic system equations. However, they can be re-
calculated easily using the Principle of D’Alambert as soon as q̈ and
the external forces on the right foot have been determined, see also [7].



right footleft foot

Fig. 5. Contact forces at left and right foot during phases of WP.

The system accelerations during swing–phase II (AFRb=AFRf =0)
are computed as

q̈ = M
−1(h + � ). (8)

During pre–swing I (AFRb = 0) resp. heel–contact III (AFRf = 0)

the 5 additional equations Eq. (2) resp. Eq. (3) on the system acceler-
ations can be used together with Eq. (7) to solve for [q̈, AFRf ] resp.
[q̈, AFRb] resulting in:

q̈ =M−1(h+ � +C
T
Rf/b AFRf/b)

AFRf/b = − (CRf/bM
−1
C

T
Rf/b)

−1

(CRf/bM
−1(h+ � ) + ĊRf/bq̇)

(9)

V. OPTIMAL CONTROL PROBLEM

The search space for a WP defined in Section III together with the
system dynamics derived in Section IV specify a whole family of fea-
sible motions. By solving an optimal control problem the WP is se-
lected, which minimizes a mixed performance index. The applied per-
formance index is based on the mechanical power Pi(t) = q̇i(t)τi(t)

transmitted by a motor in the i-th joint, c.f. [9, 10, 12]:

min
�(t)

0
@ Z t1

0

NjX
i=1

����Pi(t)Pn

���� dt+
Z t2

t1

0
@ NjX

i=1

����Pi(t)Pn

����+

+

4X
j=1

e
α(ε−rRj,z)

!
dt+

Z ts

t2

NjX
i=1

����Pi(t)Pn

���� dt
1
A

with t1,t2 and ts given and fixed; Pn, α and ε are constant parameters.
The additional term during swing-phase II depends on the position of
the contact points rRj , j = 1 . . . 4, see Fig. 2, and penalizes the right
foot being too close to the ground.

This functional needs to be minimized subject to the differential
equations of the system according to the actual motion phase, the
contact stability conditions and the inequality constraints for collision
avoidance. Phase connection conditions on the system state at t = t1
and t = t2 must ensure a continuous state trajectory. Furthermore,
the inequality constraints on the joint angles, joint velocities and joint
torques are needed to regard restrictions given by the mechanical and
electrical design. To allow WP concatenation, additional boundary
conditions on the initial state x0 and final state xs are required. These
boundary conditions depend on the special type of the walking primi-
tive. They are going to be discussed in Section VIII.

VI. OPTIMIZATION RESULTS FOR A CYCLIC WP

The described method was applied to the model of the biped robot
“Johnnie” developed at TU München [13]. Its kinematics is illustrated

in Fig. 1. Three joints are located in each hip, one joint in the knees and
two joints in the ankles. For simplification, additional joints located in
the upper body of Johnnie are not regarded during the optimization
process.

The optimal control problems are solved using the direct-collocation
software DIRCOL [14]. DIRCOL converts the continuous optimal
control problem into a static optimization problem by discretization
of trajectories in time and by representing the system states x(t) by
cubic spline and the controls � (t) by piecewise linear functions. Com-
pliance with the differential equations of the system is ensured by the
spline parameterization and equality constraints [14]. The resulting
nonlinear programming problem is then solved by the sparse solver
SNOPT [15]. All necessary dynamical equations are derived with the
help of AUTOLEV [16], a tool for analytical motion analysis.

As an example, optimization results gained for a cyclic WP with step
length lI = lII = 0.5m, step-width w0 =ws = 0.23m, rotation of the
right foot φ0=φs=0◦, step time ts=1.11s and phase transition times
t1 = 0.09 ts resp. t2 = 0.95 ts are presented. A detailed discussion
about properties of a cyclic WP follows in Section VIII. The resulting
foot motion is depicted in Fig. 6. The paths of the ZMPs of the left and
right foot rpL and rpR during the three phases as well as the projection
of the center of mass (PCOM) to the ground are shown in Fig. 7.

0.4 0.2 0 0.2 0.4 0.6
0
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0.3
right foot right footleft foot

Fig. 6. Path of right foot for cyclic WP with l = 0.5m.

As desired, the ZMP rpL moves inside the supporting area of the
left foot during the whole swing-phase II indicating a stable contact
situation. It can also be noted, that the PCOM is outside the support-
ing area during part of the swing-phase II. This fact indicates, that the
corresponding motion is dynamically stable [7]. Clearly, the PCOM
would remain inside the supporting area during the whole swing-phase
II, too, if the step time ts was increased. This would indicate statically
stable walking.

Details concerning the generation of the initial solutions needed for
starting the optimization problems, computational requirements and
computational time need can be found in [12]. Typical computation
times vary between a few minutes and a few hours depending on the
quality of the initial solution. By starting optimization runs for new
WPs with previously gained solutions for similar problems in a system-



atic way, convergence can be greatly enhanced. This allows to compute
huge numbers of WPs automatically [12].
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Fig. 7. Path of ZMP and PCOM for cyclic WP, l=0.5m.

VII. CONCATENATION OF WPS

As discussed in Section II, WPs for different step lengths, differ-
ent changes in direction and different obstacles have to be computed
such, that they can be concatenated into a smooth reference trajectory.
The necessary derivation of symmetric steps and the conditions for WP
concatenation are discussed in the following. It is assumed, that a left
step is always followed by a right step and vice versa.

A. Derivation of Symmetric Steps: WP Mapping

The demanded symmetry in the biped model allows to directly de-
rive a WP Υ̃(t) for the left foot swinging while the right foot is sup-
porting the biped from a generated WP Υ(t). This is easily achieved
by interchanging the joint angles and joint torques of the left and right
leg, since the direction of rotations of the joints is chosen appropriately,
see signs of qi in Fig. 1. Interchanging the joint angles is performed by
the mapping

q̃(t) = [qr(t), ql(t)] , t = [0, ts] . (10)

Respective joint torques � (t) are mapped accordingly. A mapped WP
is thus given by Υ̃(t) = [q̃(t), �̃ (t)].

B. Conditions for WP Concatenation

Concatenation of an arbitrary WP Υi(t), t = [0, tis] for a right step
and an arbitrary WP Υ̃i+1(t), t = [0, ti+1

s ] for a left step is defined as

Υi(t) | Υ̃i+1(t) =

�
Υi(t) , t = [0, tis]

Υ̃i+1(t− tis) , t =]tis, t
i
s + ti+1

s ]
.

For the physical feasibility of the resulting trajectory, the initial state
of Υ̃i+1(t) and final state of Υi(t) must satisfy the conditions for
walking primitive concatenation

x̃
i+1
0 = x

i
s (11)

ensuring, that the resulting joint trajectory qref (t) is smooth.
Obviously, if Eq. (11) is satisfied for a right/left combination
Υi(t) | Υ̃i+1(t), the left/right combination Υ̃i(t) | Υi+1(t) is physi-
cally feasible, too.

VIII. PROCEDURE FOR WP DATABASE GENERATION

To gain a reference trajectory allowing to walk around or step
over obstacles in a 3D-environment, a database of WPs has to be
generated. This database must comprise cyclic WPs CΥl to walk
with a constant step length l and transition WPs TΥl1❀l2 for step
length adaptation. Furthermore, combinations of two curve WPs
D,IΥl1❀l2,φ, C,IIΥl2❀l3,φ to change the walking direction by an an-
gle ±φ, see Fig. 10, and combinations of two barrier WPs B,IΥl1❀l2,c

B,IIΥl2❀l3,c to execute steps with clearance c allowing to step over
obstacles, see Fig. 9, are needed. WPs for stair climbing, starting and
stopping can be regarded accordingly, but they are not discussed in the
context of this paper. To allow WP concatenation, the database has to
be planned and synthesized such that the initial and final states x0 and
xs of individual WPs fulfill the conditions for WP concatenation, see
Eq. (11).

A. Graph representation of WP database

As a first step for WP database generation it must be determined,
which WPs are required in the walking task of the robot. Thereby, the
scenario, requirements of the algorithm for step sequence planning [6],
precision of image processing, a priori known restrictions of the biped,
e.g. step length restrictions, and the complexity of the database [12,17]
must be taken into account. The information about all necessary WPs
and how they can be concatenated is then represented in form of a
directed graph for structured representation, see Fig. 8 for a simplified
example. A node represents the state xs of the robot after execution of
a WP. The WPs themselves are represented by the edges.

Fig. 8. Graph Representation of example WP database.

The example database represented by the graph in Fig. 8 comprises
two cyclic, two transition, two barrier and two curve WPs. Starting
from the state of the robot C

x
l1
s as an example, the concatenation

CΥl1 | CΥ̃l1 | TΥl1❀l2 | CΥ̃l2 | B,IΥl2❀l3,c | B,IIΥ̃l3❀l2,c is
possible, which corresponds to two steps with step length l1, followed
by two steps with step length l2 completed by two steps over a barrier
with clearance c.

Details about the different WPs and how they are generated are
discussed in the next subsections referring to the simplified example
database depicted in Fig. 8. As simplification, the average speed is
assumed constant for all WPs and the step times ts are chosen appro-
priately in the following. Furthermore, the ratios t1/ts and t2/ts are
assumed fixed.

B. Cyclic Walking Primitive

Cyclic WPs are the first WPs to be synthesized during WP database
generation. A cyclic WP CΥl1 allows continuous symmetric straight
ahead walking with a constant step length l = l1 by concatenation of
CΥl1 |CΥ̃l1 |CΥl1 | . . .. In order to obtain a cyclic WP, the boundary
conditions Cxl1s = C

x̃
l1
0 allowing WP concatenation and the boundary



conditions Eq. (1) and Eq. (4), where lI = lII = l1, φ0 = φs = 0◦,
w0 =ws=w, are imposed on a general WP, see also [12, 17].

In addition to the desired motion, the final state of a cyclic WP
C
x
l1
s = C

x̃
l1
0 is gained as a result, which will define the initial and

final states of the WPs described in the following sections, c.f. Fig. 8.

C. Transition Walking Primitive

As a transition between two cyclic WPs CΥl1 and CΥl2 with dif-
ferent step lengths l1 
= l2 a transition walking primitive TΥl1❀l2

is defined. In order to obtain a continuous state trajectory after con-
catenating CΥ̃l1 | TΥl1❀l2 | CΥ̃l2 , initial and final states of the tran-
sition primitive have to match the corresponding states of the cyclic
primitives, c.f. Fig. 8. This is ensured by the boundary conditions
T
x
l1❀l2
0 =C

x̃
l1
s and T

x
l1❀l2
s =C

x̃
l2
0 .

D. Barrier Walking Primitives

To step over a barrier, two steps and thus a concatenation of
two walking primitives is necessary since the robot must place one
foot over the barrier (WP I), before it can lift the trailing foot over
the obstacle (WP II). This is achieved by the WP combination
B,IΥl2❀l3,c |B,IIΥ̃l3❀l2,c, see Fig. 9 for an optimization result.

-0.5 0 0.5 1
0

0.2

-0.5 0 0.5 1
0

0.2

bounds not violated
by feet, during 
WP-execution

Fig. 9. Numerical results: Stepping over a barrier.

To allow WP concatenation, the initial state of the first WP must
match the final state of the cyclic WP CΥl2 , c.f. Fig. 8. Accordingly,
the final state of the second WP must match the initial state of CΥl2 .
This is ensured by boundary conditions. The final state of the robot
after execution of the first WP B,IΥl2❀l3,c, which must correspond to
the initial state of the second WP B,IIΥ̃l3❀l2,c, is not known in ad-
vance. Thus, the two WPs cannot be computed independently. There-
fore, the walking primitives are obtained by optimizing a combination
of two general walking primitives together in one optimization prob-
lem comprising 6 phases. To ensure a space, which is not violated by
the feet during WP execution and thus allows to step over an obstacle,
inequality constraints depending on the clearance c are imposed on the
direct kinematics, see Fig. 9. The parameters ∆a and ∆b, which define
the beginning and the end of the collision free space, are assumed to
be constants for simplicity.

E. Curve Walking Primitives

A change in walking direction by an angle φ is achieved by the com-
bination of the two WPs D,IΥl1❀l4,φ and D,IIΥl4❀l1,φ. With the
first WP, the swinging foot is set in the new walking direction, i.e. it

is rotated by an angle φs = φ with respect to the supporting foot. At
the end of the second WP, the feet reside parallel to each other and flat
on the ground again (Fig. 10 and Fig. 11). As with the synthesis of
barrier WPs, curve WPs result from a six phase optimal control prob-
lem. To avoid collisions between the legs for bigger angles φ, a larger
step-width ws at the end of the first WP is appropriate. As depicted in
Fig. 11, the concatenation D,IΥl1❀l4,φ |D,IIΥ̃l4❀l1,φ corresponds
to a right and D,IΥ̃l1❀l4,φ |D,IIΥl4❀l1,φ corresponds to a left turn.

Fig. 10. Generated (left) and mapped (right) curve WPs.

Fig. 11. Right turn and left turn after concatenation of curve WPs.

IX. SIMULATION RESULTS

As a further validation for the feasibility of walking patterns
qref (t), � ref (t) gained by WP concatenation, dynamic simulations
are conducted. Contrary to the rigid body contact modeling used dur-
ing optimization, foot contacts are modeled by spring-damper pairs.
Three spring-damper pairs are located in each of the 8 contact points
rRi resp. rLi, i = 1 . . . 4 situated in the corners of the two feet, see
Fig. 2. In horizontal direction, linear spring damper combinations are
assumed. The dampers in vertical direction are nonlinear [18]. A sim-
ple PD-control law with the precomputed computed torque term � ref

is applied for tracking control:

� = kp(qref − q) + kd(q̇ref − q̇) + � ref (12)

Sensor information about the absolute pose of the walking machine in
space is not used for feedback.

One simulation result is given exemplarily in Fig. 12. The path
of the ZMP for the overall system as well as the projection of the
center of mass to the ground (PCOM) are plotted. The average ve-
locity of the biped is v = 0.45m/s. The robot starts from an im-
mobile state and executes a step of 0.36m using a starting WP. It
then executes a sequence of straight steps with the lengths 0.36m,
0.24m, 0.24m and 0.36m executing the WP concatenation CΥ̃0.36 |



TΥ0.36❀0.24 | CΥ̃0.24 | TΥ0.24❀0.36 . This is followed by three
executions of D,IΥ̃0.36❀0.36,15 | D,IIΥ0.36❀0.36,15 resulting each
in a change of direction of φ = 15◦. After executing the step
lengths 0.44m, 0.50m, 0.36m, 0.36m half a circle is walked before the
robot steps over a combination of barriers by a repeated execution of
B,IΥ̃0.44❀0.44,0.16 | B,IIΥ0.44❀0.44,0.16 thereby lifting its feet to a
clearance of c = 0.16m . As the reference trajectory ends, the ref-
erence for the joint angles becomes a constant value during double
support and the robot swings between the front and back foot before it
comes to a halt.
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Fig. 12. Simulated walk using spring-damper contacts.

X. CONCLUSIONS AND FUTURE WORK

The contribution of this paper is a systematic method for generat-
ing databases of walking primitives for humanoid robots allowing step
length adaptation, direction changes and stepping over obstacles. It
is demonstrated that walking primitives can be computed efficiently
by optimal control techniques using direct collocation methods. The
resulting walking primitives are physically feasible and they are dy-
namically resp. statically stable depending on the walking speed. The
approach is well suited for automatically generating databases of walk-
ing primitives, since convergence can be greatly enhanced by starting
optimization runs for new walking primitives with previously gained
solutions for similar problems. The information about the walking
primitive database stored in the proposed graph structure together with
perceptual information about the environment can be used by a step
sequence planner to search for walking primitive combinations allow-
ing a biped robot to follow a local path towards a goal position while
stepping over obstacles [6].

First experiments with biped “Johnnie” [13] indicate, that the tra-
jectories gained by the proposed performance index are only partially
suitable for execution on a physical robot since joint accelerations can
be unnecessarily high. However, successful walking could be achieved
by regarding accelerations directly in the performance index. Our fu-
ture research will therefore be directed to tailoring the trajectories to

the needs of a physical biped by an appropriate choice of the perfor-
mance index and/or further restrictions of the search space.
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